TECHNISCHE UNIVERSITÄT BERLIN The Frobenius-Jordan form of nonnegative matrices

نویسندگان

  • Volker Mehrmann
  • Manideepa Saha
  • Uriel Rothblum
چکیده

In this paper we use preferred and quasi-preferred bases of generalized eigenspaces associated with the spectral radius of nonnegative matrices to analyze the existence and uniqueness of a variant of the Jordan canonical form which we call FrobeniusJordan form. It is a combination of the classical Jordan canonical form in the part associated with the eigenvalues that are different from the spectral radius, while it is like the Frobenius normal form in the part associated with the spectral radius. Based on the Frobenius-Jordan form, spectral and combinatorial properties of nonnegative matrices are discussed. In particular, we analyze the existence of nonnegative graph representations of the generalized eigenspace associated with the spectral radius.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES

We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.

متن کامل

The Influence of the Marked Reduced Graph of a Nonnegative Matrix on the Jordan Form and on Related Properties: A Survey

For a nonnegative matrix P, we discuss the relation of its marked reduced graph to that part of the Jordan form that is associated with the Perron-Frobenius root, to the nonnegativity of the eigenVectors and generalized eigenvectors, to the nonnegativity of solutions of linear equations, and to the asymptotic growth of powers of the matrix. Results are often stated in terms of M-matrices, and s...

متن کامل

The Sign-Real Spectral Radius for Real Tensors

In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012